Bcl-2 Regulates HIF-1α Protein Stabilization in Hypoxic Melanoma Cells via the Molecular Chaperone HSP90

نویسندگان

  • Daniela Trisciuoglio
  • Chiara Gabellini
  • Marianna Desideri
  • Elio Ziparo
  • Gabriella Zupi
  • Donatella Del Bufalo
چکیده

BACKGROUND Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1alpha, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF)-mediated tumour angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1alpha protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1alpha protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1alpha protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1alpha stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1alpha degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1alpha protein. We also showed that bcl-2, HIF-1alpha and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1alpha protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1alpha protein during hypoxia, and in particular the isoform HSP90beta is the main player in this phenomenon. CONCLUSIONS/SIGNIFICANCE We identified the stabilization of HIF-1alpha protein as a mechanism through which bcl-2 induces the activation of HIF-1 in hypoxic tumour cells involving the beta isoform of molecular chaperone HSP90.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degradation of HIF-1alpha under Hypoxia Combined with Induction of Hsp90 Polyubiquitination in Cancer Cells by Hypericin: a Unique Cancer Therapy

The perihydroxylated perylene quinone hypericin has been reported to possess potent anti-metastatic and antiangiogenic activities, generated by targeting diverse crossroads of cancer-promoting processes via unique mechanisms. Hypericin is the only known exogenous reagent that can induce forced poly-ubiquitination and accelerated degradation of heat shock protein 90 (Hsp90) in cancer cells. Hsp9...

متن کامل

Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1alpha stabilization.

Hypoxia-inducible factor (HIF) alpha subunits are induced under hypoxic conditions, when limited oxygen supply prevents prolyl hydroxylation-dependent binding of the ubiquitin ligase pVHL and subsequent proteasomal degradation. A short normoxic half-life of HIF-alpha and a very rapid hypoxic protein stabilization are crucial to the cellular adaptation to changing oxygen supply. However, the mol...

متن کامل

Heat induction of the unphosphorylated form of hypoxia-inducible factor-1alpha is dependent on heat shock protein-90 activity.

Hypoxia-inducible factor (HIF)-1alpha is the oxygen-sensitive subunit of HIF-1, a transcriptional master regulator of oxygen homeostasis. Oxygen-dependent prolyl hydroxylation targets HIF-1alpha for ubiquitinylation and proteasomal degradation. Unexpectedly, we found that exposing mice to elevated temperatures resulted in a strong HIF-1alpha induction in kidney, liver, and spleen. To elucidate ...

متن کامل

Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells

Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α) in A2058 and A375 huma...

متن کامل

Immunoexpression patterns for Hypoxia-inducible Factor-1α and von Hippel-Lindau protein, in relation to Hsp90, of human brain tumors.

The pathogenesis of many tumors, including brain tumors, has been associated with hypoxia, which induces the transcriptional activity of hypoxia-inducible Factor-1α (HIF-1α). HIF-1α is normally degradated by the von Hippel-Lindau protein (pVHL) but, in hypoxia, pVHL/HIF-1α interaction is inhibited resulting in the nuclear accumulation of HIF-1α. Hsp90 (Heat shock protein 90), as a chaperone pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010